Fusion Forecasting for Residential PV:
An Adaptive Regression Blend of Al and GTI with Online Calibration

Erik Schmidt
erik@f97.io

August 2025

Abstract

I present Fusion Forecasting, an adaptive regression framework that blends Al-based and
physics-based (GTI) solar forecasts, followed by online calibration. The method addresses
weaknesses of individual models by dynamically learning weights and correcting bias using
recent data. This paper describes the motivation, mathematical formulation, and system
design, with emphasis on practical deployment for residential PV forecasting.

1 Introduction

Forecasting photovoltaic (PV) output is a challenge due to the variability of weather and local
conditions. Traditionally, Global Tilted Irradiance (GTI) models provide estimates based on
solar geometry and irradiance forecasts. More recently, machine learning (ML) models trained
on historical data have been applied. Each has strengths and weaknesses: physics-based GTI
is stable but blind to local quirks, while Al can adapt to local patterns but may overreact to
unusual conditions.

To overcome these limitations, I propose Fusion Forecasting: a regression-based ensemble
that learns the optimal combination of AI and GTI forecasts, applies an intercept to reduce
bias, and uses online calibration for robustness.

2 Fusion Architecture

Inputs and Notation

Let ¢ index calendar days. Denote by yai(t) € R>¢ the calibrated machine-learning forecast,
yari(t) € R>g the physics—based irradiance forecast, and y(t) € R>¢ the realized daily produc-

tion from the inverter. Define the feature vector z(t) = [Jai(t) @GTI(t)]T

Linear Blending Layer

Fusion predicts a pre-calibrated production via an affine map

Yin(t) = waryai(t) + wetiyari(t) + b, (1)

with parameters 6§ = {war, wgrr, b}. Unlike a fixed convex blend, Fusion does not require
war + waTr = 1 or w. > 0; the affine form is strictly more general and can correct systematic
scale/offset biases in either input.

Estimation Objective (Time-Series Aware)

Parameters are learned from a historical window Tiyain = {t1,...,tn§} by minimizing a robust,
regularized objective
o1 ~ 2 2
min NteTZ P&(y(t) - ylin(t)) + M wis + wér), (2)
train

where p;(-) is the Huber loss (quadratic near 0, linear in the tails), and A > 0 is an Ly (ridge)
penalty to reduce variance and prevent pathological weights when inputs are collinear. In
practice I use a time-series split (forward chaining) for cross-validation to tune A and to select
the training span N that balances recency and sample size.

Optional constraints. If desired, soft constraints can be added:
war, weTt > 0 (non-negativity) or war + weTr &~ 1 (via penalty).

I generally prefer the unconstrained affine form and let calibration (below) handle residual scale.

Online Calibration (Median-Ratio Scaling)

Raw affine predictions can drift seasonally or inherit residual biases. I correct them with a
robust, one-parameter scale estimated from the most recent K days with reliable data:

Dk = {d € last K days | y(d) > 0, Jin(d) > 0}, (3)
_ y(d)

r(d) = ()’ d € Dk, (4)

scale = median (winsorize,[7(d)]). (5)

Winsorization at small tails « (e.g., 5%) dampens the influence of outliers (sensor dropouts,
extreme haze). The final forecast is

Z/J\fusion(t) = scale - Q/J\Iin(t)' (6)

If |Dk| is too small, I keep the last valid scale or revert to scale = 1.

Fallback and Cold-Start Behavior

When N (training samples) is below a minimum threshold or the regression fit becomes ill-
conditioned (e.g., near-collinear inputs over a short span), I bypass and revert to a proven
convex blend:

giback (1) = 0.7gar(t) + 0.37aT1(t) + bo, (7)
with by set to the median residual over the last available window (or 0 if unavailable), followed
by the same median-ratio calibration.

Uncertainty Quantification

I report day-ahead uncertainty using residual dispersion on a rolling window. The uncertainty
is calculated on the final calibrated forecasts Jiusion:

E(d) = y(d) - {y\fusion(d)v (8)
o = 1.4826 - MAD ({e(d) }aeny) (9)

and form symmetric prediction bands
@\fusion(t) + Zp 6'\, 2084 ~ 1.0, 20.975 ~ 1.96. (10)

This simple, distribution-free approach is robust and adequate for operational dashboards; more
elaborate conformal or quantile methods are possible future work.

Operational Safeguards

I enforce physically plausible ranges post-hoc:

0 < ?/J\fusion(t) < Pmax‘daylight,hours(t),

and ignore calibration updates on days flagged as incomplete or with inverter anomalies. Missing
inputs are imputed conservatively (carry-forward for Al; clear-sky capped proxy for GTI) and
flagged to the user.

Relation to the Hybrid Baseline

The fixed Hybrid method yny, = a a1 + (1 — &) ygr1 with o = 0.7 is a special case of with
b =0, war = a, wgrr = 1 — @, and no learning. Fusion generalizes this by learning {w.,b}
from data and adding an explicit online calibration step @, which empirically reduces bias and
improves stability under regime shifts.

3 Implementation and Deployment

The Fusion model is implemented in Python using scikit-learn for regression, pandas for
data handling, and runs efficiently on commodity hardware. Online calibration uses a rolling
14-day window, updating scale factors continuously as new production data arrives.

3.1 Pseudocode of Training and Inference

To make the Fusion framework fully transparent and reproducible, I outline its main operations
in pseudocode. The workflow is divided into four core procedures:

e TRAIN_FUSION: learns the regression weights war, wgrr and the intercept b from
historical data using a robust ridge regression. If too few training samples are available,
the procedure falls back to the fixed 70/30 split.

e CALIBRATE_SCALE: performs online calibration by computing a robust median ratio
between observed and predicted values over a recent rolling window, stabilizing forecasts
against short-term drift.

e FORECAST DAY: generates the daily Fusion forecast by applying the learned weights
and calibration factor, while clamping the output within physical plausibility bounds.

e UNCERTAINTY: estimates predictive uncertainty via robust dispersion (MAD) of
residuals over recent days, enabling interval forecasts.

These building blocks together form the daily operation loop: retraining when necessary,
recalibrating scale, producing forecasts, and quantifying uncertainty. The following pseudocode
captures these steps in detail:

PROCEDURE TRAIN_FUSION(D_train):

D_train = {t} indices with valid AI, GTI, actual

if |D_train| < N_min:
Fallback to fixed 70/30 weights if insufficient data
w_AI, w_GTI = 0.7, 0.3
Intercept = median residual of fallback model
b = median_over(D_train) [y - (0.7*y_hat_AI + 0.3%y_hat_GTI)]
Note: median_over([]) is defined to return O for this fallback.

return (w_AI, w_GTI, b)

Build design matrix and target
X = [y_hat_AI, y_hat_GTI] # two columns
y = actual

Time-series CV (forward chaining) over D_train

**to choose lambda in Lambdax*x*

best_lambda = argmin_over_lambda_in(Lambda)
mean_CV_Huber_Ridge_MAE(X, y, lambda=lambda)

Fit final model on all D_train with best_lambda
(w_AI, w_GTI, b) = fit_Huber_Ridge(X, y, lambda=best_lambda)
return (w_AI, w_GTI, b)

PROCEDURE CALIBRATE_SCALE(D_recent, w_AI, w_GTI, b, alpha, prev_scale):
D_recent = most-recent K days with valid inputs & actuals
R = empty list
for d in D_recent:
y_lin = w_AIxy_hat_AI(d) + w_GTI*y_hat_GTI(d) + b
if y(d) > 0 and y_lin > O:
R.append(y(d) / y_lin)

Require at least 3 points or 30% of the window
if length(R) < max(3, ceil(0.3*K)):
return (prev_scale if prev_scale is not None else 1.0)

Winsorize ratios to reduce outlier impact
R_w = winsorize(R, lower=alpha, upper=1-alpha)
return median(R_w)

PROCEDURE FORECAST_DAY(t, w_AI, w_GTI, b, scale, P_max):
y_lin w_AI*y_hat_AI(t) + w_GTIxy_hat_GTI(t) + b
y_fusion = scale * y_lin

Physical plausibility clamp
y_fusion = max(0, min(y_fusion, P_max * daylight_hours(t)))
return y_fusion

PROCEDURE UNCERTAINTY(D_recent, w_AI, w_GTI, b, scale):

Rolling residual dispersion via robust MAD

Calculates error on the final, calibrated forecast

E = empty list

for d in D_recent:
y_lin = w_AI*y_hat_AI(d) + w_GTI*y_hat_GTI(d) + b
y_fus = scale * y_lin
Use same validity criteria as calibration for robustness
if y(d) is not None and y(d) > 0 and y_fus > O:

H OH HF H H H H H

4

I presented Fusion Forecasting: a regression-based blend of Al and GTI forecasts with on-
line calibration. This approach improves robustness, reduces bias, and adapts dynamically to
changing conditions. Unlike Hybrid, Fusion does not enforce weights to sum to 1, enabling more
flexible modeling. Together with safeguards in calibration, this yields a practical yet accurate
forecasting method. It is efficient enough for embedded deployment while providing accuracy

E.append(y(d) - y_fus)

Avoid estimating sigma from too few samples
if length(E) < 5:
return sigma = None

MAD median(|E - median(E)|)
sigma = 1.4826 * MAD # Convert MAD to robust sigma estimate
return sigma

Daily operation (end-to-end):
1) If retraining day or drift detected:
(w_AI, w_GTI, b) = TRAIN_FUSION(D_train)
2) scale = CALIBRATE_SCALE(D_recent, w_AI, w_GTI, b, alpha, prev_scale)
3) y_hat_fusion(t) = FORECAST_DAY(t, w_AI, w_GTI, b, scale, P_max)
4) sigma = UNCERTAINTY(D_recent, w_AI, w_GTI, b, scale)
5) Report y_hat_fusion(t) and optionally
y_hat_fusion(t) * z_p * sigma

Conclusion

gains that are valuable for residential energy planning.

Acknowledgements

I thank the open-source community for tools such as scikit-learn/ and pandas|, and the renewable

energy research community for inspiration.

References

1]

2]

Pedregosa, F. et al. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine

Learning Research, 12, 2825-2830.

Hyndman, R. J., & Athanasopoulos, G. (2008). Forecasting: Principles and Practice.

OTexts.

Antonanzas, J., Osorio, N., Escobar, R., Urraca, R., de Pison, F. M., & Antonanzas-Torres,

F. (2016). Review of photovoltaic power forecasting. Solar Energy, 136, 78-111.

Richardson, M. & Wallace, S. (2012). Getting Started with Raspberry Pi. O'Reilly Media.

https://scikit-learn.org
https://pandas.pydata.org

	Introduction
	Fusion Architecture
	Implementation and Deployment
	Pseudocode of Training and Inference

	Conclusion

